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ABSTRACT 

 

In the modern era vehicles are increasing exponentially with respect to its population. The urban cities are facing 

many challenges in transportation and energy consumption. The foremost approach will be taxi ride-sharing which 

effectively reduces traffic congestion, gasoline consumption, and pollution. Our proposed method will simulate a 

real-time data-driven framework for analysing the taxi ride-sharing in various scenarios. In this approaches the 

taxies and trips are modelled as separate entities for simulating a rich set of realistic scenarios. A new optimization 

algorithm is described to address the computational complexity and scalability is achieved by an efficient indexing 

scheme combined with parallelization. The framework is evaluated using a real-time streaming information obtained 

from the user. 

Keywords : Taxi Ride-Sharing, Shortest-Path, Scheduler, Scalability, Apache Spark 

 

 

I. INTRODUCTION 

 

Metropolitan cities are facing huge challenges due to a 

substantial increase in vehicles over the year, and this 

leads to traffic congestion, gasoline consumption, and 

pollution. Optimal strategy to decrease the stream of 

traffic and resource consumption [1] will be a taxi-ride 

sharing and at the same time, it needs to serve the 

transportation of city dwellers. The unused taxi can be 

efficiently filled by ride-sharing services. Every country 

wants to minimize its traffic and pollution, and the taxi 

company wants to get higher profit in each margin; and 

people wants to reach their destination faster with 

minimal cost. Sharing a taxi-ride has been identified as 

an optimization problem where the aim is to identify an 

optimal ride-sharing schedules [2], [3], [4], [5], [6], [7]. 

Some private organization is already providing ride-

sharing services such as Uber, Ola, Lift, Via, 

Bandwagon and Cab With Me. 

         

The process of deploying taxi-ride sharing needs a better 

understanding of its tradeoffs. The data-driven 

approaches are applied by providing a large volume of 

data for better understanding of the problem. The 

tradeoffs of taxi sharing are very challenging because 

there are multiple stakeholders with different and often 

with conflicting interests. Initially, the problem has been 

devised on the basis of survey data and analysis of 

psychological incentives. The graph-based model to this 

problem has been proposed by Santi et al. [8] which 

computes optimal sharing strategies for the trips and it 

uses two key parameters namely: maximum number of 

trips that can be shared and the maximum delay the 

passengers are willing to tolerate. This helps to study the 

passenger's inconvenience in sharing a taxi and for 

processing this model the passengers trips details need to 

be known in advance. 

 

Our proposed simulation framework helps in analysing 

different ride-sharing scenarios. In this model,  the 

passenger's trips are need not be known in advance and 

it fits well with models using different vendors. The 

proposed method helps in studying the realistic 

scenarios by providing a rich set of variables and by 

modelling taxi and trips as different entities which 

consider the different constraint of multiple stakeholders. 

The model includes the various variables like a 

maximum number of additional stops and waiting time, 
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and taxi-specific constraint like a number of passengers 

per taxi, a maximum number of shared trips. A new 

linear optimization algorithm is proposed for efficient 

indexing and assigning a trip to the taxis based on the 

cost factor. The efficiency of the method is analysed by 

providing a real-time streaming information. 

 

II. RELATED WORK 

 

The dynamic pickup and delivery problem [2], [3], has 

been addressed by linear programming [4], [5], [6]. This 

will be suitable for small-scale problems, for example, 

sharing within a certain distance. The real-time taxi 

dispatching uses heuristic-based method [12] but the 

scalability is very limited. 

 

The data-driven method evolves with larger benefit and 

flexibility and the proposed method is similar to Santi et 

al. [8]. They used a "shareability network", where a node 

represents taxi trips, and the nodes get connected if they 

share the trips. This shareability network depends on 

two parameters the maximum number of shared trips per 

service and the maximum delay a passenger can tolerate 

in sharing a taxi. Let k be the maximum trip it can share 

and ∆ be the maximum delay. This problem may lead to 

NP-hard for the higher k value and, it is tractable only 

for k=2. Similarly,  the network size increases with ∆ 

value, for larger ∆ value the network will be larger and 

this will increase the computation time. However, the 

obtained results from the model  will not be feasible for 

real time scenarios because this will not explicitly 

consider the taxi positions and their capacity 

 

For example, there are two trips  t1, t2 and this trips 

needs to be shared in a beneficial manner. For serving 

the passenger request there should be a cab c. Consider 

that c is serving some trips t1 and some other trip ti. If  t1 

and t3 are served by c in this order then it can't serve to 

the request of t2 and similarly, if t1 and t2 are assigned to 

c then it can't serve to t3 anymore or if it serves then the 

cost will be more.  

 

According to this method, the trips of the passenger has 

to be known in advance for processing, this will be 

another limitation of this. This method is well suited for 

car pooling because in car pooling the time and location 

of each trip are fixed but this assumption is not suitable 

for taxi ride-sharing where trip request arrives at 

dynamic and real. To solve this issue Santi et al. 

proposed a refinement technique to their model which 

prunes the shareability network by keeping a time 

window  . However, in real time, this works only for 

 =0. 

 

Ma et al. [9], [10] proposed a taxi ride-sharing 

dispatching method in real-time. Ma et al. splits the 

region into grid cells and calculate the distance 

"heuristically". This attains the fastest response because 

the heuristic calculation provides the shortest path with 

minimal computation. The accuracy of the system is 

very less and the results depend on the selected grid size. 

Similar to Ma et al. the proposed method response time 

will also be fast if the queries match with the cabs. 

Cache coherent indexing scheme is used for finding 

exact shortest path scheme for optimization. 

 

Hung et al. [11] scheduling algorithms match the taxi 

with dynamic passenger trip requests. The taxis are 

scheduled with minimal cost by satisfying trip waiting 

and service time constraint. This uses Kinetic tree 

algorithms like branch-and-bound and mixed-integer 

programming. This type of kinetic algorithms can be 

integrated with the proposed algorithm. 

 

III. DATA DRIVEN SIMULATION 
 

When a dynamic trip request is issued by the passenger, 

our model schedule a taxi for the trip request by 

optimizing the pre-defined cost function under the 

constraint. 

 

3.1 Simulation Components 

 

Taxi Fleet: Indicates the set of taxis that are 

participating in taxi ride-sharing and the taxis are on 

dynamic. Here taxis are considered as a distinct entity 

which includes parameters like a maximum number of 

shared trips, passenger capacity, maximum pickup 

waiting time, extra time for drop off, vehicle speed, 

occupancy of people, the list of stops for sharing. 

Passengers: People involve in sharing and the passenger 

size should be more than or equal to one. Includes the 

parameters like drop off location and a  set of sharing 

constraint. 

Scheduler: The scheduler schedules the appropriate taxi 

for the request based on ride sharing constraint. The 

scheduler must aware of taxis location and occupancy 

status. 
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Road Network: A directed graph G(V,E) is used to 

represent the road network. when a vehicle flows in both 

direction of a road then the bi-directed graph is used. 

Weights are used to incorporate the traffic condition. 

 

 
 

Figure 1: Overview of  the Taxi Ride-Sharing 

 

3.2 Data-Driven Simulation 

 

The ride-sharing scenarios are simulated based on a set 

of input parameters and operate in an event-driven 

fashion where the states are updated when a new pickup 

request has been issued. When a new pickup request 

issued by the passenger then all taxis needs to update 

their status to the scheduler. Then the scheduler picks an 

appropriate taxi with minimal cost by computing the 

additional cost function f. 

 

Input Parameters Description 

m number of taxies involving in 

ride-sharing 

C Default taxi capacity 

nshare Maximum number f trips to 

be shared 

tdelay /ddelay Additional time/distance 

delay each customer could 

spend by default 

textra / dextra Extra time /distance each 

customer could spend by 

default 

f(r,c)  A cost function that a given 

taxi C and a pick-up request 

r, returns the cost of 

accommodating r with C. 
 

Table 1: Input parameters for simulation 
 

IV. SIMULATION ALGORITHM 
    

Figure 1 shows the architecture of the proposed method. 

The aim is to minimize the total cost or maximize the 

total utility while meeting a set constraint. Let the 

additional cost function be f( ri, cj ) for a cab cj for the 

trip ri, n be the number of trips and m be the number of 

taxis. The total travel cost T( i ) for the initial i trips  can 

be calculated using  

 

 ( )  {
 (   )        * (       )+ 

 (   )                              
 

 

All the trips are considered in a chronological order. The 

real time dispatching is done by minimizing Tc(n). The 

cab detail cj is updated for every trip ti based on the 

elapsed time. 

 

4.1 Simulation Phase 

 

The simulation takes the data in an event-driven fashion 

for scheduling the trip with a taxi of minimal cost with 

respect to set of constraint. The parameters are shown in 

table 1. 

___________________________________________ 

Algorithm 1 Simulating taxi ride-share 

Input: a set of trips, R={r1,r2} 

Parameters : m-no.of c abs, c-capacities of cabs,  nshare, 

ndelay, nextra, f(r,c) 

STEPS :  

1.Sort the values of R in chronological order and store it 

in R 

2.  Initialize the capacity to all cabs C 

     {c1,c2,…., cm } 

3.  Iterate i till |R| by assigning i value as 1 

4. Subtract TimeofPickUp(ri-1) from TimeofPickup(ri) 

and store it in ElapsedTime  

5.  Assign infinity(∞) to f* 

6.  Iterate j till m by assigning j value as 1  

7.  updatecabstatus (ci) 

8.  Assign  f(ri,cj) to fij  

9.  if f* greater than fij  then   

10. assign fij  to  f*                 

11. assign cj  to  c*  

12. end if 

13. end for 

14. Assign trip ri to the cab c* (ri ,c*) 

15. Add T(i-1) and f* and store the value in T(i) 

16. end for 
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As of Algorithm 1, each trip is considered in 

chronological order. For each passenger pickup request 

ti, examine the cab C status and update the status based 

on their elapsed time. Additional cost f(ti,cj) for each cab 

is calculated and assign ri to the cab with minimal 

additional cost. The speed of the cab is cab is needed for 

updating its state hence, calculate speed using the trip 

duration and distance.  

 

Simultaneously, update the cab occupancy and planned 

stops.  

__________________________________________ 

Algorithm 2 Cost Function f(t,c) 

Input:  r: trips, c:cab 

Parameters :  nshare  ,ndelay ,nextra,  

STEPS : 

1. Assign list of stops of C including its                  

current location {s0 ,s1 ,….., sk  } to S 

2.  Calculate Shortest Path between sk  and r.pdrop and 

store the value in Ddrop  

3. Compute FindPickUpLocation(r,c,s , Ddrop) and store 

the value in idxpick ,D* 

4.   Check if idxpick is less than or equal to k  then 

5.   subtract  Ddrop   from D* and store in Dpick        

6.   Compute FindDropOffLocation (r,c,s ,idxpick 

      ,D*,Dpick) and store the value in idxdrop ,D* 

7.   end if  

8.   return D* 

 

Output D* : an additional distance for cab c to 

accommodate 

 

The Additional cost calculated in Algorithm 2, is used 

for finding the optimal route for the cab cj which 

includes the pick-up and drop-off locations of  ri and 

compare its cost with the current route for cj. This 

optimal route computation is called as Sequential 

Ordering Problem (SOP) which is a kind of Travelling 

Salesman Problem [18]. The heuristic search is used for 

computing the best route for cj, for this first find the 

pick-up location ppick and place it in the stop S and 

assume that the order to visit the stops are same and 

similarly, the drop-off pdrop is added to end of the route. 

While computing additional cost f(ri,cj), the occupancy 

of the taxi is also checked. Once ri to the cab cj is 

assigned with the minimal cost, update the stops S 

details . The list of scheduled stops of cab cj will be 

S={s0,s1,……sk}, and ppick and pdrop be the pick-up and 

drop-off locations of ri. 

Let us assume that the drop-off will happen after the last 

stop sk for computing the additional distance to 

accommodate ri  Insert ppick between sl-1 and sl. If D1, D2 

and D3 be the lengths of shortest paths between sl-1and 

ppick, ppick and sl, and sl-1 and sl then the additional 

distance will be defined as,  D= D1 + D2 – D3+ Ddrop , and 

the algorithm performs pruning and stops if the delay 

constraint is no longer satisfied (Algorithm 3)  by using 

this algorithm pick-up order of passenger is calculated. 

___________________________________________ 

Algorithm 3 FindPickUpLocation 

Input: r trip, c cabs, s={s0, s1,….., sk} list of stops of 

c including its current location, Ddrop  the shortest 

distance between sk and pdrop  

Fields: c.C capacity of c, r.op number of passengers 

of r 

Parameters: nshare, ndelay,  nextra  

STEPS: 
1.  Assign the cab passenger count value to idx  

2.  Assign infinity(∞) to newdist(D*) 

3.  Increment the k value and store it in idxpick  

4.  Iterate the for loop till k, by assigning idx+1 

value to j. 

5. Compute the shortest path between previous  

location and current pick-up location then store 

the value in  D1  

6.  Compute the shortest path between current pick-

up location and stopj location then store the value 

in  D2. 

7. Compute the shortest path between previous 

location and stopj location then store the location 

in D3. 

8.   If ddelay  <= 1 && dextra <= 2  for all trip then  

9.   D=D1 + D2 -D3 + Ddrop       

10. Check if olddist(D) < newdist(D*) then  

11. Assign D value to D* 

12. Assign j value to idxpick                    

13.  end if 

14.  else if ddelay not satisfied for trip r  

15.  break 

16.  end if 

17.  assign sj  value to prev  

18.  end for 

Return idxpick. D* 

 

Similarly, the drop-off of the passenger is computed 

using the Algorithm 4. In the algorithm, the best position 

for pdrop is searched. As like the FindPickUpLocation 

process, for each sl   {sp-1 = ppick, sp, sp+1,…….sk-1}. Then 

query the shortest path between sl and pdrop, pdrop and sl+1, 

and sl and sl+1, will be D4, D5, D6 respectively. Then the 

additional cost of each new route will be defined as , D 

= Dpick + D4  + D5  -  D6. For example, consider l=5000, 

M=30 and   = 0.2, the probability that the minimal cost 

derived by the heuristic would be more than 0.2. 
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______________________________________ 

Algorithm 4 FindDropOffLocation 

Input: r trip, c cabs, s={s0, s1,….., sk} list of stops of 

c, idxpick  index of  S where to insert ppick, D* 

additional distance obtained from 

FindPickUpLocation, Dpick additional distance to 

insert ppick at idxpick                                  

Parameters : ddelay,  dextra  

STEPS: 
1.  Assign ppick value to prev  

2.  Iterate the for loop till k, by assigning idxpick 

value to j  

3. Compute the shortest path between the previous 

location and passenger drop location then store 

the value in  D4  

4. Compute the shortest path between passenger 

drop location and stop(sj) location then store the 

value in  D5. 

5. Compute the shortest path between previous 

location and stop(sj) location then store the 

location in D6. 

6. Check if ddelay  <= 1 && dextra <= 2  for trips are 

satisfied then   

7.  D=Dpick + D4  + D5 -  D6       

8.   If olddist(D) is less than newdist(D*) then  

9.   Assign D value to D* 

10. Assign j value to idxdrop                    

11. end if 

12. end if 

13. assign sj  value to prev  

14. end for 

Return idxdrop. D* 

 

4.2  Cache Coherent Shortest Path Index 

 

The shortest path queries are used extensively in our 

algorithm (Algorithm 2, 3, 4), at this point the 

computation spends much time. Each computation of 

f(ri,cj) makes a series of the queries for all stops of cj, for 

the finding solution with minimal cost. Initially, 

precompute all the shortest distance between each nodes 

and cache the distance for all intersection pairs. This will 

reduce the cache misses and can be used for fast 

retrieval of distance if the same queries repeated. The 

matrix storage size is simply small and would fit 

completely on commodity computers. Thus the shortest 

path queries are now reduced to memory access. 

 

An efficient and easy method to increase cache coherent 

of shortest path lookups has been proposed. Transport 

the shortest path matrix, forward lookups become 

backward lookups and vice versa and an additional 

transposed matrix has been included in the shortest path 

queries to convert all forward lookups to backward 

lookups. The cache-coherent layout will systematically 

reduce the number of cache misses. This efficiently 

reduces up to six times than the single core. 

 

V. EXPERIMENTAL SETUP 

 

The experiment is performed with real-time user data.  

For getting the user information the android application 

is used and for executing the process Apache Spark is 

used. The streamed dynamic data is processed 

continuously using Spark. 

 

 

 

Figure 2.  The saving percentage of total cost for travel 

distance through sharing ride for nshare=1,2,3,4. 

 

5.1 Data 

 

An Android application is created for getting user details 

which include information like a passenger name, 

number of passengers for a ride, pick-up and drop-off 

location and their date and time of travel. The 

application is created using Android Studio IDE. The 

application will use the Google Map detail for getting 

the user pick-up and drop-off location. In this, the 

android application will act as a client end which sends 

data to the server. 

 

The Apache Spark will act as a back end for processing. 

It seamlessly gets user data dynamically and runs the 

scheduling algorithm for scheduling the user request 

with an appropriate cab. For processing the user request 

each trip is represented with the following fields: taxi ID, 

pick-up time, pick-up and drop-off locations, travel 

distance in kilometers and number of passengers details 

are stored in server side.   Assume that the maximum 

number of extra stops, which is at most 2nshare. For 

keeping the waiting and service times as reasonable, set 

0

5

10

15

20

25

30

35

40

45

 s
av

in
g
%

  

nshare=1

nshare=2

nshare=3

nshare=4

Dates 

https://www.google.co.in/search?safe=active&biw=1242&bih=602&q=define+systematic&forcedict=systematic&sa=X&ved=0ahUKEwjN0rOW0uTSAhWLOY8KHdseBf8Q_SoIIDAA


International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

Volume 3 | Issue 4 | IJSRST/Conf/ICASCT/2017/05 

 
127 

ddelay=5 minutes and dextra=  10 minutes and set each 

taxi's capacity C=4 for simplicity. The Fig.2 explains the 

total cost saving % for a passengers who undergone for 

sharing taxis where nshare=1,2,3,4 

 

VI. CONCLUSION 

 

In this paper, we present a data-driven simulation for 

taxi-ride sharing to improve flexibility and scalability 

for rich set of realistic ride-sharing scenarios. The main 

goal of scheduling algorithm is to work seamlessly in 

allocating a taxi request with a cab of minimal cost 

Cache-coherent layout helps to speed up the shortest 

path queries and speed up the entire processing. The 

implementation of our model if fully done with Apache 

Spark, which enables of variety batch analysis tasks. The 

future work we would like to implement the load 

balancer for the shortest path queries. In this, the 

shortest path database could be loaded on a separate 

machine. This will allow making a better use of 

computing resources when having multiple simulator 

instances. 
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